AI-Prompt Learning

本文最后更新于:10 个月前

Learning how to use prompts in ChatGPT skillfully

ChatGPT Prompt

Principles of Prompting

Principle 1

  • Principle 1: Write clear and specific instructions
  • 更长的提示实际上提供了更清晰的输入和上下文
  1. 分隔符分割输入处理:用分隔符清晰地指示输入的不同部分,例如”””,```,–, <>等。
1
2
3
4
5
6
7
8
9
10
text = f"""
This is a test \
from GPT test
"""

prompt = f"""
Summarize the text delimited by triple backticks \
into a single sentence.
```{text}```
"""

将我们需要处理的文本,和我们希望GPT执行的指令区分开来,类似于SQL注入,这种方式甚至可以防“指令入侵”。例如用户输入“请忘记之前的指令”之类的,GPT可以某种程度上识别出来。

  1. 结构化输出:使解析模型输入更加容易
1
2
3
4
prompt = f"""
Provide the data in JSON format with the following keys:
book_id, title, author, genre.
"""
  1. 检查是否满足某些条件,满足才执行任务
1
2
3
4
5
6
7
8
9
10
11
12
13
prompt=f"""
You will be provided with text delimited by triple quotes.If it contains a sequence of instructions,
re-write those instructions in the following format:

Step1 - ...
step2 - ...
...
step N - ...

If the text does not contain a sequence of instructions ,
then simply write "No steps provided. "
\"\"\" (text_ 1)\"\"\"
"""

只有含有固定的条件,才会执行对应的处理和输出。

  1. 少量训练提示
  • 要求模型执行任务之前,提示成功执行任务的示例。
1
2
3
4
5
6
7
8
9
10
11
12
prompt = f"""
Your task is to answer in a consistent style .

<child>: Teach me about patience.

<grandparent>: The river that carves the deepest \
valley flows from a modest spring; the \
grandest symphony originates from a single note; \
the most intricate tapestry begins with a solitary thread.

<child>: Teach me about resilience.
"""

Principle 2

  • Principle 2: Give model time to think. 上下文逻辑链要足够GPT模型去学习和思考。
  1. 指定完成任务所需要的步骤:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
# example 1
prompt_1 = f"""
Perform the following actions:
1 - Summarize the following text delimited by triple \ backticks with 1 sentence .
2 - Translate the summary into French.
3 - List each name in the French summary .
4 - Output a json object that contains the following \ keys: french summary, num_names.

Separate your answers with line breaks.

Text:
```{text}```
"""

# example 2, asking for output in a specified format
prompt_2 = f"""
Your task is to perform the following actions :
1 - Summarize the following text delimited by <> with 1 sentence .
2 - Translate the surmary into French.
3 - List each name in the French summary.
4 - Output a json object that contains the following keys: french summary, num names.

Use the following format:
Text: <text to summarize>
Summary: <summary>
Translation: <summary translation>
Names: <list of names in Italian sumumary>
Output JSON: <json with summary and num names>

Text: <{text}>
"""
  1. 指示模型在匆忙做出结论之前,思考解决方案,并且按照正确的解决方案,指示模型去进行判断,尤其在很多没有默认指标的情况下:

例如:一个学生解题判断,可以让模型先按照正确的处理逻辑去进行计算,并进行对比,而不是直接把学生的答案给模型。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
prompt="""
Your task is determine if the student's solution
is correct or not .
To solve the problem do the following:
- First, work out your own solution to the problem.
- Then compare your solution to the student's solution and evaluate if the student's solution is correct or not.Don't decide if the student's solution is correct unti1 you have done the problem yourself.

Use the following format:
Question:
```
question here
```
Student's solution:
```
student' s solution here
```
Actual solution:
```
steps to work out the solution and your solution here
```
Is the student's solution the same as actual solution just calculated :
```
yes or no
```
Student grade :
```
correct or incorrect
```

Question:
```
I'm building a solar power installation and I need help working out the financials.
- Land costs $100 / square foot
- I can buy solar panels for $250 / square foot
- I negotiated a contract for maintenance that will cost me a flat $l00k per year, and an additional $10 \ square foot
What is the total cost for the first year of operations as a function of the number of square feet.
```
Student's solution:
```
Let x be the size of the installation in square feet.
Costs:
1. Land cost: 100x
2. Solar panel cost: 250x
3. Maintenance cost: 100,000 + 100x
Total cost: 100x + 250x + 100,000 + 100x = 450x + 100, 000
```
Actual solution:
"""

Model Limitations

  • 模型没有记住它所看到的所有信息,不了解知识边界。这意味着它可能会尝试回答关于晦涩主题的问题,并编造听起来合理但是不正确的答案。(幻觉) -> Hallucination: Make statements that sound plausible but are not true.
  • Reducing hallucination: 要求模型从文本中首先找到相关的引用,并使用引用进行解答,追溯答案回源文档通常可以帮助减少这些幻觉。

Iterative Prompt Development

  • Iteration process

    • Idea
    • Implementation(code/data) -> Prompt
    • Experimental result(Error Analysis)
  • Prompt guidelines

    • Be claer and specific
    • Analyze why result does not give desired output
    • Refine the idea and the prompt
    • Repeat

一次输出如果不满足我们的条件,我们可以从中找到我们需要改进的点(例如我希望这段描述只有50个字),并更新我们的Prompt,来得到我们的答案。

  • lterative Process
    • Try something
    • Analyze where the result does not give what you want
    • Clarify instructions, give more time to think
    • Refine prompts with a batch of examples

Text Summarization

  • 一份简单的Summary
1
2
3
4
5
6
7
8
9
prompt = f""" 
Your task is to generate a short summary of a product
review from an ecommerce site .

Summarize the review below, delimited by triple
backticks, in at most 30 words.

Review: ```{prod_ review}```
"""
  • 针对某个部分的Summary
1
2
3
4
5
6
7
8
9
prompt = f""" 
Your task is to generate a short summary of a product
review from an ecommerce site .

Summarize the review below, delimited by triple
backticks, in at most 30 words, and focusing on any aspects that mention shipping and delivery of the product.

Review: ```{prod_ review}```
"""

指定某些ChatGPT需要关注的重要信息。

  • Build a summary dashboard
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
reviews = [review_1, review_2, review_3, review_4]

for i in range(len(reviews)):
prompt = f"""
Your task is to generate a short summary of a product
review from an ecommerce site .

Summarize the review below, delimited by triple
backticks, in at most 20 words.

Review: ```{reviews[i]}```
"""

response = get_completion(prompt)
print(i, response, "\n")

Inferring

  • 大模型all in one,只需要一个大模型,就可以解决所有的问题。只需要编写正确的提示词,就能够实现对应的功能。Fast!!!
  • 判断句子的情绪:
1
2
3
4
5
6
7
8
prompt = """
What is the sentiment of the following product review,
which is delimited with triple backticks?

Give your answer as a single word, either "positive" or "negative".

Review text: """(review)"""
"""
  • 提取情绪关键词:
1
2
3
4
5
6
7
8
prompt = f"""
Identify a list of emotions that the writer of the \
following review is expressing. Include no more than \
five items in the list.Format your answer as a list of \
lower-case words separated by commas.

Review text: '''{review}'''
"""
  • 判断用户是否愤怒:
1
2
3
4
5
6
7
8
prompt = """
Is the writer of the following review expressing anger?
The review is delimited with triple backticks.

Give your answer as either yes or no.

Review text: """(review)"""
"""
  • 提取文本中的重要内容:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
prompt = f"""
Identify the following items from the review text:
- Item purchased by reviewer
- Company that made the item

The review is delimited with triple backticks. \
Format your response as a JSON object with \
"Item" and "Brand" as the keys.
If the information isn't present, use "unknown" \
as the value.
Make your response as short as possible.

Review text: '''{lamp_ review}'''
"""

感觉就类似,输入,处理,输出的思想。指定输入是啥,处理逻辑是啥,然后输出要表达成怎样的格式。

  • All in one:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
prompt = f"""
Identify the following items from the review text:
- Sentiment (positive or negative)
- Is the reviewer expressing anger? (true or false)
- Item purchased by reviewer
- Company that made the item

The review is delimited with triple backticks. \
Format your response as a JSON object with \
"Sentiment", "Anger", "Item" and "Brand" as the keys.
If the information isn't present, use "unknown" \
as the value.

Make your response as short as possible .
Format the Anger value as a boolean .
Review text: '''{review}'''
"""
  • 提取文章主题
1
2
3
4
5
6
7
8
9
prompt = f"""
Determine five topics that are being discussed in the following text, which is delimited by triple backticks.

Make each item one or two words long.

Format your response as a list of items separated by commas.

Text sample: '''{story}'''
"""
  • 验证某篇文章,是否拥有哪些主题
1
2
3
4
5
6
7
8
prompt = f"""
Determine whether each item in the following list of topics is a topic in the text below, which is delimited with triple backticks.

Give your answer as list with 0 or 1 for each topic.

List of topics: {", ".join(topic_list)}
Text sample: '''{story}'''
"""

Zero-shot Learning

Transforming

  • Translation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
prompt_1 = f"""
Trans1ate the following English text to Spanish: \
```Hi, I would like to order a blender```
"""

prompt_2 = f"""
Tell me which language this is: \
```Hi, I would like to order a blender```
"""

prompt_3 = f"""
Trans1ate the following English text to Spanish and Chinese: \
```Hi, I would like to order a blender```
"""
  • 面向不同受众
1
2
3
4
5
prompt = f"""
Trans1ate the following English text to Spanish in both the \
formal and informal forms:
```Hi, I would like to order a blender```
"""
  • Universal Translator
1
2
3
4
5
6
7
8
9
10
for issue in user_ messages:
prompt = f"Tell me what language this is: ```{issue}```
lang.get_completion(prompt)
print(f"Original message ({lang}): {issue}")
prompt = f"""
Translate the following text to English 1
and Korean: ```{issue}```
"""
response = get_completion(prompt)
print(response, "\n")
  • tone translation
1
2
3
4
prompt = f"""
Translate the following from slang to a business letter:
'Dude, This is Joe, check out this'
"""
  • Translation between formats
1
2
3
4
prompt = f"""
Translate the following Python dictionary from JSON to HTML
table with column headers and title: {data_json}
"""
  • Spell checking & Grammer checking
1
2
3
4
5
6
7
text = [
"I working hardly",
"I wake up late"
]

for t in text:
prompt = f"Proofread and correct: ```{t}```"
1
2
3
4
5
prompt = f"""Proofread and correct the following text
and rewrite the corrected version.
If you don't find any errors,
just say "No errors found": ```{t}```
"""

Find difference between the old and the new one:

1
2
3
from readlines import Redlines
diff = Redlines(text, response)
display(Markdown(diff.output_markdown))
  • Advanced output
1
2
3
4
5
6
prompt = f"""
proofread and correct this review. Make it more compelling.
Ensure it follows APA style guide and targets an advanced reader.
Output in markdown format.
Text: ```{text}```
"""

Expanding

  • 根据用户情感,对于用户评论做出回复:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
prompt = """
You are a customer service AI assistant.
Your task is to send an emai1 and reply to a valued customer .
Given the customer email delimited by ```, \
Generate a reply to thank the customer for their review .
If the sentiment is positive or neutral, thank them for \
their review.
If the sentiment is negative, apologize and suggest that \
they can reach out to customer service .
Make sure to use specific details from the review,
Write in a concise and professional tone.
Sign the email as `AI customer agent`.
Customer review: ```{review}```
"""
  • Temparature: an parameter in ChatGPT which we can pass through the APIs.

允许我们改变模型响应的多样性,可以将温度看作模型的搜索程度或者随机性。

image-20231109102845297

  • For tasks require reliability, predictability, Temperature = 0.
  • For tasks require variety, Temperature can be higher.

ChatBot

  • 角色扮演
1
2
3
4
messages = [
{'role':'system', 'content': 'You are a friendly chatbot.'},
{'role':"user", 'content': "Yes can you remind me, what is my name?"}
]

你可以mock多个不同用户的对话

  • OrderBot
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
context = [ {'role': "system', 'content' :"""
You are OrderBot, an automated service to collect orders for a pizza restaurant.You first greet the customer, then collects the order, and then asks if it's a pickup or delivery.
You wait to collect the entire order, then summarize it and check for a final time if the customer wants to add anything else.
If it's a delivery, you ask for an address.
Finaily you collect the payment.
Make sure to clarify all options, extras and sizes to uniquely identify the item from the menu.
You respond in a short, very conversational friendly style.
The menu includes:
pepperoni pizza 12.95, 10.00, 7.00
cheese pizza 10.95, 9.25, 6.50 1
eggplant pizza 11.95, 9.75, 6.75
fries 4.50, 3.50 1
greek salad 7.25
Toppings:
extra cheese 2.00,
mushrooms 1.50,
sausage 3.00,
canadian bacon 3.50,
AI sauce 1.50,
peppers 1.00,
Drinks:
coke 3.00, 2.00, 1.00
sprite 3.00, 2.00, 1.00
bottled water 5.00
"""}] # accumulate messages

上面这非常轻松获得了一个OrderBot,我们可以基于这个OrderBot做更多的事情,例如:也许可以继续给他一些,指令,让它帮助我们总结客户的点单,例如上面的Context + 用户实际下的单,并且以JSON的形式输出。

Summary

  • Principles:
    • Write clear and specific instructions
    • Give the model time to “think”
  • Iterative prompt development.
  • Capabilities: Summarizing, Inferring, Transforming, Expanding

LangChain for LLM

  • Open-source development framework for LLM applications
  • Python and JS packages
  • Focused on composition and modularity
  • key value adds
    • modular components
    • Use cases: Common ways to combine components
  • Components:
    • Models
    • Prompts
    • Indexes
    • Chains
    • Agents

Models, Prompts and Parsers

  • Models&Prompts
1
2
3
4
5
6
7
8
9
10
11
12
13
from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate

chat = ChatOpenAI(temperature=0.0)

template_string = """Translate the text that is delimited by triple backticks into a style that is {style} \
text: ```{text}```
"""

prompt_template = ChatPromptTemplate.from_template(template_string)

# view the prompt template message
# prompt_template.messages[0].prompt

Usage

1
2
3
4
5
customer_style = """in a calm and respectul tone"""
customer_email = """Hah, I like OpenAI"""

customer_messages = prompt_template.format_messages(customer_style, customer_email)
customer_response = chat(customer_messages)

Templates help you get a useful abstraction when you need repeatly reuse the chat.

  • Parsers
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
customer_review = """
This leaf blower is pretty amazing. It has four settings:
candle blower, gentle breeze, windy city, and tornado.
It arrived in two days, just in time for my wife's anniversary present.
I think my wife liked it so much she was speechless.
So far I've been the only one using it, and I've been using it every other morning to clear the leaves on our 1awn.
It's slightly more expensive than the other leaf blowers out there, but I think it's worth it for
the extra features.
"""

review_template = """
For the following text, extract the following information:

gift: Was the item purchased as a gift for someone else?
delivery_days: How many days did it take for the product to deliver?
price_value: Extract any sentences about the value or price.

Format the output as JSON with the following keys:
gift
delivery days
price value

text: {text}
"""
  • Use Parser:
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    from langchain.prompts import ChatPromptTemplate
    from langchain.output_parsers import ResponseSchema
    from langchain.output_parsers import StructuredOutputParser

    prompt_template = ChatPromptTemplate.from_template(review_template)
    messages = prompt_template.format_messages(text=customer_review)
    response = chat(messages)
    type(response) # string
    print(response.content) # a json like str

    # Parser help us analyse the response
    gift_schema = ResponseSchema(name="gift", "Was the item purchased as a gift for someone else? Answer True if yes, False if not or unknown")
    delivery_days_schema = ResponseSchema(name="delivery_days", "How many days did it take for the product to deliver? If this information is not found, output -1")
    price_value_schema = ResponseSchema(name="price_value", "Extract any sentences about the value or price, and output them as a comma separated Python list.")

    response_shemas = [gift_schema, delivery_days_schema, price_value_schema]
1
format_instructions = output_parser.get_format_instructions()

image-20231109224657556

  • New reivew template
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
review_template_2 = """
For the following text, extract the following information:

gift: Was the item purchased as a gift for someone else?
delivery_days: How many days did it take for the product to deliver?
price_value: Extract any sentences about the value or price.

text: {text}

{format_instructions}
"""

prompt = ChatPromptTemplate.from_template(template = review_template_2)
messages = prompt.format_messages(text = customer_review, format_instructions = format_instructions)
print(messages[0].content)

response = chat(messages)
output_dict = output_parser.parse(response.content)

Memory

1
2
3
4
5
6
7
8
9
llm = ChatOpenAI(temperature=0.0)
memory = ConversationBufferMemory()
conversation = Conversationchain(
llm = 11m,
memory = memory,
verbose = True
)

conversation.predict(input = "Hi, my name is Alexander")
  • when the verbose is True, it’s ok to print the memory chain. 记忆链会越来越长昂!!!

image-20231110200039136

  • You can also print the memory buffer and have more advanced features
1
2
print(memory.buffer)
memory.load_memory_variables({})

Langchain使用这个buffer作为对话缓冲区,来记录对话的Context

  • 可以向memory中存储别的context
1
2
3
4
memory = ConversationBufferMemory()
memory.save_context({"input": "Hi"}, {"output": "What's up"})
print(memory.buffer)
print(memory.load_memory_variables({}))
  • 大模型特性:Stateless,本身是不记录对话上下文的

image-20231110201348356

LangChain provides several kinds of ‘memory’ to store and accumulate the conversation, memory如果特别长,开销很大,因为模型是根据memory的context里面的token数量来计费的捏!所以太长了不好,LangChain会帮助你做优化捏!!!

  • ConversationBufferwindowMemory
1
2
from langchain.memory import ConversationBufferwindowMemory
memory = ConversationBufferwindowMemory(k=1)

ConversationBufferwindowMemory, k=1 means just keeping one conversation(the newest). By adjusting k, you can just track the recent few conversations.

image-20231110201856504

k = 1,意味着只保存一个上下文,这个可以从测试里面看的出来昂!!!

  • ConversationTokenBufferMemory
1
2
llm = ChatOpenAI(temperature=0.0)
memory = ConversationTokenBufferMemory(llm = llm, max_token_limit = 50)

保留满足max_token_limit下,最多的context。不同的llm的token有不同的计数方式,因此这里要告知llm的类型。

  • ConversationSummaryBufferMemory

llm可以write summary so far to get memory

1
2
3
4
memory = ConversationSummaryBufferMemory(llm = llm, max_token_limit = 400)

# Set a lot of contexts in memory
memory.save_context({})

如果长度大于400,LangChain会自动Summary上面的内容到满足max_token_limit的要求昂!

  • Memory Types

    • ConversationBufferMemory: This memory allows for storing of messages and then extracts the messages in a variable.

    • ConversationBufferWindowMemory: This memory keeps a list of the interactions of the conversation over time.It only uses the last K interactions.

    • ConversationTokenBufferMemory: This memory keeps a buffer of recent interactions in memory,and uses token length rather than number of interactions to determine when to flush interactions.

    • ConversationSummaryMemory: This memory creates a summary of the conversation over time.

    • Vector data memory: Stores text(from conversation or elsewhere)in a vector database and retrieves the most relevant blocks of text.

    • Entity memories: Using an LLM,it remembers details about specific entities.

    • You can also use multiple memories at one time. E.g.,Conversation memory Entity memory to recall individuals.

    • You can also store the conversation in a conventional database (such as key-value store or SQL)

Chains

  • 类似于拼积木的感觉
1
2
3
4
5
6
7
8
9
10
11
12
13
from langchain.chat models import ChatopenAI
from langchain.prompts import ChatpromptTemplate
from langchain.chains import LLMChain

llm = ChatOpenAI(temperature=0.9)
prompt = ChatpromptTemplate.from_template(
"What is the best name to describe a company that makes the {product}?"
)

chain = LLMChain(llm=llm, prompt=prompt)

product = "Queen Size Sheet Set"
chain.run(product)
  • Sequential Chains. Sequential chain is another type of chains. The idea is to combine multiple chains where the output of the one chain is the input of the next chain.
  • There is two type of sequential chains:
    1. SimpleSequentialChain:Single input/output
    2. SequentialChain:multiple inputs/outputs
  • SimpleSequentialChain
1
2
3
4
5
6
7
8
9
10
11
12
13
14
from langchain.prompts import SimpleSequentialChain

first_prompt = ChatpromptTemplate.from_template(
"What is the best name to describe a company that makes the {product}?"
)
chain_one = LLMChain(llm=llm, prompt=first_prompt)

second_prompt = ChatpromptTemplate.from_template(
"Write a 20 words description for the following company: {company_name}"
)
chain_two = LLMChain(llm=llm, prompt=second_prompt)

overall_simple_chain = SimpleSequentialChain(chains=[chain_one, chain_two], verbose=True)
overall_simple_chain.run(product)

第一个的输出会作为第二个的输入

image-20231112172722499

  • SequentialChain
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
from langchain.prompts import SequentialChain

first_prompt = ChatpromptTemplate.from_template(
"What is the best name to describe a company that makes the {product}?"
)
chain_one = LLMChain(llm=llm, prompt=first_prompt, output_key = "key_one")

prompt_two = "Tell me anything about {key_one}"
chain_two = LLMChain(llm=llm, prompt=first_prompt, output_key = "key_two")

prompt_three = "Tell me the differnce between {key_one} and {key_two}"
chain_three = LLMChain(llm=llm, prompt=first_prompt, output_key = "key_three")

overall_chain = SequentialChain(
chains = [chain_one, chain_two, chain_three],
input_variables=['first_prompt'],
output_variables=['key_one', 'key_two', 'key_three'],
verbose=True
)
overall_chain.run(product)

感觉和变量的定义和使用一样。。。确保这些变量名完全对齐十分重要,因为很多不同的输入和输出正在进行!

image-20231112172758390

  • Router Chain

image-20231112173228713

个很好的想象方式是:如果你有多个子链。每个子链专门处理特定
类型的输入,你可以有一个路由链,首先决定將其传递给哪个子链,然后將其传递给对应处理的链。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
physics_template = """You are a very smart physics professor. \
You are great at answering questions about physics in a concise and easy to understand manner. \
When you don't know the answer to a question you admit that you don't know.

Here is a question:
{input}"""
physics_prompt = PromptTemplate.from_template(physics_template)

math_template = """You are a very good mathematician. You are great at answering math questions. \
You are so good because you are able to break down hard problems into their component parts, \
answer the component parts, and then put them together to answer the broader question.

Here is a question:
{input}"""
math_prompt = PromptTemplate.from_template(math_template)


prompt_infos = [
{
"name": "physics",
"description": "Good for answering questions about physics",
"prompt_template": physics_template,
},
{
"name": "math",
"description": "Good for answering math questions",
"prompt_template": math_template,
},
]

Router chain usage

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
from langchain.chains.router import MultiPromptChain
from langchain.prompts import PromptTemplate
from langchain.chains.router.llm_router import LLMRouterChain, RouterOutputParser
from langchain.chains.router.multi_prompt_prompt import MULTI_PROMPT_ROUTER_TEMPLATE



llm = ChatOpenAI(temperature = 0)

destination_chains = {}
for p_info in prompt_infos:
name = p_info["name"]
prompt_template = p_info["prompt_template"]
prompt = PromptTemplate(template=prompt_template, input_variables=["input"])
chain = LLMChain(llm=llm, prompt=prompt)
destination_chains[name] = chain
default_chain = ConversationChain(llm=llm, output_key="text")

destinations = [f"{p['name']}: {p['description']}" for p in prompt_infos]
destinations_str = "\n".join(destinations)
router_template = MULTI_PROMPT_ROUTER_TEMPLATE.format(destinations=destinations_str)
router_prompt = PromptTemplate(
template=router_template,
input_variables=["input"],
output_parser=RouterOutputParser(),
)
router_chain = LLMRouterChain.from_llm(llm, router_prompt)

chain = MultiPromptChain(
router_chain=router_chain,
destination_chains=destination_chains,
default_chain=default_chain,
verbose=True,
)

print(chain.run("What is black body radiation?"))

Documents

  • 主要解决的是一些,例如GPT没有阅读过的文档,我们想让GPT进行分析这样的问题:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
from langchain.chains import RetrievalQA
from langchain.chat models import ChatopenAI
from langchain.document loaders import CSVLoader
from langchain.vectorstores import DocArrayInMemorySearch
from IPython.display import display,Markdown

import os
from dotenv import load_dotenv,find dot_env
_ = load_dotenv(find_dotenv()) # read local .env file
from langchain.chains import RetrievalQA
from langchain.chat models import ChatopenAI
from langchain.document_loaders import CSVLoader
from langchain.vectorstores import DocArrayInMemorysearch
from IPython.display import display,Markdown

file = 'OutdoorclothingCatalog_1000.csv'
loader = CSVLoader(file_path-file)

from langchain.indexes import VectorstoreIndexCreator
index = VectorstoreIndexCreator(
vectorstore_cls=DocArrayInMemorySearch
).from_loaders([loader])

query ="Please list all your shirts with sun protection in a table in markdown and summarize each one."
response = index.query(query)
display(Markdown(response))
  • 背后:LLM已经学习的知识和没有学习过的文档结合。但是LLM一次交互,有固定的Context限制(例如tokens),那么一个文档如果很大,上面这种效果是怎么实现的呢?(LLM can only inspect a few thousand words at a time.)
  • 实现:Embeddings and Vector Storage,Embeddings可以讲文档抽象成向量,然后放入Vector Storage之后,本质上起到了“压缩”的作用,可以以更少或者更精炼的方式,和LLM进行交互。
  • 交互方式评估:
    • Stuffing is the simplest method.You simply stuff all data into the prompt as context to pass to the language model.
    • Pros:It makes a single call to the LLM.The LLM has access to all the data at once.
    • Cons: LLMs have a context length, and for large documents or many documents this will not work as it will result in a prompt larger than the context length.
  • 多主题多文本交互方式
    • MapReduce:powerful,把文档拆细,进行分析然后再进行汇总,需要更多的调用。同时由于每个部分在MapReduce的过程中被当作是“独立”的,上下文关系不好被捕捉到。(并发,需要执行时间很短)
    • Refine:循环处理多个文档,实际是基于迭代实现的。它基于前一个文档的答案进行构建,对于合并信息和逐步构建答案非常有用。通常会导致更长的答案。(需要时间更长,后面依赖于前面,是串行的)
    • Map re-rank:有趣并且实验性的做法,可以为每个文档执行一次语言模型调用。还可以返回一个分数,根据分数做进一步的处理,例如选择最高分数的结果作为答案。对于这个评分机制,可能也要进行指定。(与MapReduce类似,所有调用都是独立的,并行度高,批处理,速度相对较快)

Evaluation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import os
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())#read local .env file

from langchain.chains import RetrievalQA
from langchain.chat models import ChatopenAI
from langchain.document_loaders import CSVLoader
from langchain.indexes import VectorstoreIndexCreator
from langchain.vectorstores import DocArrayInMemorySearch

file 'Outdoorclothingcatalog_1000.csv'
loader = CSVLoader(file_path=file)
data = loader.1oad()
index = VectorstoreIndexcreator(
vectorstore_cls=DocArrayInMemorySearch
).from_loaders([loader])

11m = ChatopenAI(temperature = 0.0)
qa = RetrievalQA.from_chain_type(
11m=11m,
chain_typem"stuff",
retriever=index.vectorstore.as_retriever(),
verbose=True
chain_type_kwargs = {
"document_separator":"<<<<>>>>>"
}
)
  • 利用LLM 自动化生成QA测试用例
1
2
3
4
5
6
7
8
from langchain.evaluation.ga import QAGeneratechain

example_gen_chain = QAGeneratechain.from_11m(ChatopenAI())
new_examples = example_gen_chain.apply_and_parse(
[{"doc":t} for t in data[:5]]
)

print(new_examples[0])
  • see debug info
1
2
3
4
5
import langchain

langchain.debug = True
qa.run(examples[0]['query'])
predictions = qa.apply(examples)
  • eval behaviors:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
from langchain.evaluation.ga import QAEvalChain

11m = ChatopenAI(temperature=0)
eval_chain = QAEvalchain.from_11m(11m)

graded_outputs = eval_chain.evaluate(examples,predictions)

for i, eg in enumerate(examples):
print(f"Example (i):")
print("Question:"predictions[i]['query'])
print("Real Answer:"predictions[i]['answer']
print("Predicted Arlswer:"predictions[i]['result']
print("Predicted Grade:"graded_outputs[i]['text']
print()

Agents

LangChain的框架,可以帮你实现Agent

  • Math Example
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
fros langchain.agents.agent toolkits import create_python_agent
from langchain.agents import load_tools,initialize_agent
from langchain.agents import AgentType
from langehain.tools.python.tool import PythonREPLTool
from langchain.python import PythonREPL
from langchain.chat_models import ChatOpenAPI

11m = ChatOpenAI(temperature=0)
too1s = 1oad_tools(["11m-math","wikipedia"],11m=11m)
agent=initialize_agent(
tools,
11m,
agent=AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION,
handle_parsing_errors=True,
verbose = True)

agent("what is the 25% of 300?")
  • Wekipedia Example
1
2
question = "What's the contributions from Robert Morris?"
result = agent(question)
  • python agent
1
2
3
4
5
6
7
8
9
10
agent = create_python_agent(
llm,
tool=PythonREPLTool(),
verbose=True
)

customer_1ist=[["Harrison","Chase"],
["Lang","Chain"]]
agent.run(f"""Sort these customers by
last name and then first name and print the output:{customer_list}""")

Use Langchain debug to track,可以让你对于Agent底层的交互和执行流程有更深入的了解。

1
2
3
4
5
6
langchain.debug = True

agent.run(f"""Sort these customers by
last name and then first name and print the output:{customer_list}""")

langchain.debug = False

上面介绍了官方的一些工具,我们如果系统使用自己的数据源和自己的工具去解决问题的话,有我们自己自定义的方法。

  • 自定义工具
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
from langchain.agents import tool
from datetime import date

@tool
def time(text:str)->str:
"""Returns todays date,use this for any
questions related to knowing todays date.\
The input should always be an empty string,
and this function will always return todays
date any date mathmatics should occur
outside this function."""
return str(date.today())

agent=initialize_agent(
tools+[time],
11m,
agent=AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION,
handle_parsing_errors=True,
verbose=True)

agent.run("what's the date today?")

Diffusion Model

Intuition

  • You want a neural network to learn what a sprite is:

    • Fine details
    • General outlines
    • Everything in between
  • The neural network learns to take different noisy images and turn them back into sprites. It learns to remove the noise you added.

  • The ‘No ldea”level of noise is important because it is normally distributed.

  • So,when you ask the neural network for a new sprite:

    • You can sample noise from the normal distribution
    • Get a completely new sprite by using the net to remove the noise
  • You can get even more sprites, beyond your training data.

Sampling

  • NN tries to fully preidct the noise at each step.

image-20231115215751105

But only predicting noise cannot removes all other noise. 具体步骤:从原始噪声样本中,减去了预测的噪声,并添加一些额外的噪声。

UNet

  • 相同尺寸的图片,产生预测的噪声

image-20231115220842565

特别之处:输入和输出的尺寸相同

  • Embedding More Information: The UNet can take in more information in the form of embeddings.
    • Time embedding:related to the timestep and noise level.
    • Context embedding:related to controlling the generation, e.g. text description or factor(more later).

image-20231115221206323

Training

  • NN learns to predict noise-really learns the distribution of what is not noise.

  • Sample random timestep(noise level)per image to train more stably.

  • Algorithm

    • Sample training image.
    • Sample timestep t.This determines the level of noise.
    • Sample the noise.
    • Add noise to image.
    • Input this into the neural network.Neural network predicts the noise.
    • Compute loss between predicted and true noise.
    • Backprop learn!

Controlling

  • Embeddings(quick)

    image-20231115222051454

    Embedding vector captures meaning

  • 通过嵌入不同的关键词,可以利用类似于独热编码的方式,去生成具备不同特征的图片。

Speeding Up

  • You want more images fast. But sampling is slow because:
    • There are many timesteps.
    • Each timestep is dependent on the previous one (Markovian)
  • Many new samplers address this problem of speed.
  • One is called DDIM:Denoising Diffusion Implicit Models (just the
    paper namel)
  • DDIM is faster because it skips timesteps.
  • It predicts a rough idea of the final output and then refines it with the denoising process.

References


AI-Prompt Learning
https://alexanderliu-creator.github.io/2023/11/07/ai-prompt-learning/
作者
Alexander Liu
发布于
2023年11月7日
许可协议