Stanford Pratical Machine Learning-机器学习简介

本文最后更新于:1 年前

这一章主要简单介绍一下机器学习,包括机器学习的类型之类的。

Types of ML Algorithms

  • Supervised:Train on labeled data to predict labels

    • Self-supervised: Labels are generated from data. (E.g. word2vec, Bert)
  • Semi-supervised:Train on both labeled and unlabeled data, use models to infer labels for unlabeled data

    • E.g. self-training
  • Unsupervised:Train on unlabeled data

    • E.g. clustering, density estimation(GAN)
  • Reinforcement learning:Use observations from the interaction with the environment to take actions to maximize reward

  • Tips:

    • We can design supervised training tasks for unlabeled data:

      • Self-supervised learning: generate labels from data. E.g. word2vec, BERT
      • GAN: generating fake data with trivial label from unlabeled data
    • Training tasks can be different from how the model is evaluated / used.

Components in Supervised Training

  • Model

    • A parameterized function to map inputs to label
      • Model parameters VS hyper parameters
      • E.g. listing house -> sale price
  • Loss

    • The measure of how good the model does in terms of predicting the outcome
      • E.g. classification / regression / contrastive / triplet / ranking
      • E.g. $(predict_price - sale_price) ^ 2$
  • Objective

    • The goal to optimize model params for
      • E.g. minimize the sum of losses over examples
  • Optimization

    • The algorithm for solving the objective

Types of Supervised Models

  • Decision trees: Use trees to make decisions
  • Linear methods: Decision is made from a linear combination of input features
  • Kernel machines: Use kernel functions to compute feature similarities
  • Neural Networks: Use neural networks to learn feature representations

Summary

image-20230824205751094

References

  1. slides

Stanford Pratical Machine Learning-机器学习简介
https://alexanderliu-creator.github.io/2023/08/24/stanford-pratical-machine-learning-ji-qi-xue-xi-jian-jie/
作者
Alexander Liu
发布于
2023年8月24日
许可协议