Stanford Practical Machine Learning-课程介绍

本文最后更新于:1 年前

这门课程主要关于,机器学习在工业界的运用。教授一个数据科学家,将机器学习用到工业界的时候后,在不同的阶段所遇到了一些比较重要的技术细节。

Industrial ML Applications

  • Manufacturing: Predictive maintenance, quality control
  • Retail: Recommendation, chatbox, demand forecasting
  • Healthcare: Alerts from real-time patient data, disease identification
  • Finance: Fraud detection, application processing
  • Automobile: Breakdown prediction, self-driving
  • House Price Prediction: The goal is to predict the bid price for the winning buyer

ML Workflow

  • Problem formulation
  • A loop:
    • Collect & process data
    • Train & Tune models
    • Deploy models
    • Monitor

ML Challenges

  • Formulate problem: focus on the most impactful industrial problems
  • Data: high-quality data is scarce, privacy issues
  • Train models: ML models are more and more complex, data-hungry, expensive
  • Deploy models: heavy computation is not suitable for real-time inference
  • Monitor: data distributions shifts, fairness issues

Roles

  • Domain experts: have business insights, know what data is important and where to find it, identify the real impact of a ML model

  • Data scientists: full stack on data mining, model training and deployment

  • ML experts: customize SOTA ML models

  • SDE: develop/maintain data pipelines, model training and serving pipelines

  • Skill Improvement:

image-20230823195435207

SDE和领域专家也会慢慢向数据科学家靠拢,数据科学家慢慢会成为机器学习专家。

  • How data scientists spent their time (source: Anaconda survey 2020)

image-20230823195502168

Course Topics

  • Techniques a data scientist needs but often not taught in university ML/stats/programming courses
    • Data
      • Collect/ preprocess data
      • Covariate/ concepts/label shifts
      • Data beyond IID
    • Train
      • Model validation/combinations/tuning
      • Transfer learning
      • Multi-modality
    • Deploy
      • Model deployment
      • Distillation
    • Monitor
      • Fairness
      • Explainability

References

  1. 课件
  2. 课程官网
  3. Slides

Stanford Practical Machine Learning-课程介绍
https://alexanderliu-creator.github.io/2023/08/23/stanford-practical-machine-learning-ke-cheng-jie-shao/
作者
Alexander Liu
发布于
2023年8月23日
许可协议